
www.manaraa.com

Incentive-Centered Design for Information Security

Rick Wash
School of Information
University of Michigan
rwash@umich.edu

Jeffrey K. MacKie-Mason
School of Information
University of Michigan
jmm@umich.edu

Abstract
Humans are “smart components” in a system, but cannot
be directly programmed to perform; rather, their auton-
omy must be respected as a design constraint and incen-
tives provided to induce desired behavior. Sometimes
these incentives are properly aligned, and the humans
don’t represent a vulnerability. But often, a misalignment
of incentives causes a weakness in the system that can be
exploited by clever attackers. Incentive-centered design
tools help us understand these problems, and provide de-
sign principles to alleviate them. We describe incentive-
centered design and some tools it provides. We provide
a number of examples of security problems for which In-
centive Centered Design might be helpful. We elaborate
with a general screening model that offers strong design
principles for a class of security problems.

1 Introduction

People are the weakest link in security [1]. People write
their passwords on sticky notes on the screen. People
don’t patch their home systems and become botnet zom-
bies. People choose whether to label a patch “critical”
or just “recommended.” These actions generally reflect
motivated behavior in response to the configuration of
incentives confronting individuals.1

Incentive centered design (ICD) is a research area with
the aim of designing systems that respect motivated be-
haviors, by providing incentives to induce human choices
that improve the effectiveness of the system. ICD pro-
ceeds from rigorous mathematical modeling of strategic
interactions between people (and their systems), to prac-
tical principles for system and protocol design. ICD dif-
fers from other economics of security work in its focus
on providing concrete design principles.

The design of technology systems can have a great in-
fluence over the incentives that people have to use those
systems. For example, in the early days of the commer-
cial Internet there was a debate over whether the Internet

should be application-blind, allowing anyone to put any-
thing on it, or application-aware like cable TV and on-
line services like AOL, with central authorities filtering
content [8]. ICD modeling explained why the technical
architecture of application-aware networks tends to limit
the number of information goods offered, and biases se-
lection toward mass market goods. This design issue is
activated again in the current “net neutrality” policy de-
bate.

When describing how a system works we include
humans as smart, distributed and — crucially — au-
tonomous components, with their own information sets
and motivations. We draw primarily on microeconomics,
game theory and cognitive psychology to model incen-
tives, individual responses to them, and inter-individual
strategic awareness and behavior. Because humans are
non-programmable components, we often supplement
mathematical and numerical model validation methods
with human subject experiments.2

Much ICD research has focused on two problems piv-
otal to information security: getting the good stuff in and
keeping the bad stuff out. We describe some examples
in Section 2. For instance, individuals often are not di-
rectly compensated for the benefit their actions provide
to others. Using a worm-throttling technology [14] on
the border of my network benefits others, but I may have
little incentive to install it because it only aids others after
a worm has already penetrated my subnet. How can we
design this technology so administrators are motivated to
use it? This is the problem of getting the good stuff in.

Keeping the bad stuff out is similar to pollution. It
arises when an individual does not bear the direct costs
that her actions impose on others. When a spy places
spyware on my machine, she uses CPU and bandwidth
that degrade my use of the machine and she imposes
other costs by appropriating my private information. The
spy doesn’t take these costs into account when choosing
to distribute her wares. ICD focuses attention on behav-
ioral incentives to discover who the polluters are (they

1

HotSec ’06: 1st USENIX Workshop on Hot Topics in SecurityUSENIX Association 1



www.manaraa.com

don’t want to announce it!) and to discourage their pol-
luting activities.

It is not possible to usefully summarize the full range
of ICD models in a short paper. Instead, as in Section
3 we provide a more detailed discussion of a principal-
agent model of screening, which can be applied to many
hidden action and hidden information problems. The
principal/designer sets terms and conditions for inter-
action with agents, who have their own objectives, and
whose conduct may help or harm the principal. A suc-
cessful screen provides incentives for agents to reveal
their differences, so the principle can keep the bad stuff
out.

2 Incentive Problems in Security

Incentives issues are implicated in many information se-
curity problems. We describe a few illustrative prob-
lems drawn from two interesting, but not exhaustive cat-
egories.

2.1 Getting the Good Stuff In

Labeling Vulnerabilities When announcing new vul-
nerabilities, vendors and security providers sometimes
label them (e.g., “critical”) and suggest that users and
system administrators use the label to determine urgency
and effort. This is a clear case of an ICD problem known
as hidden information. The vendor knows more about
these vulnerabilities than the users do, but in ICD we in-
quire into the credibility of the announced labels. Report-
ing a critical vulnerability in software makes the software
look bad; reporting many critical vulnerabilities is even
worse. This bad PR is a cost borne by the vendor but
not the end users. There may be offsetting benefits from
honesty, but the trade-off implies that vendors sometimes
will underreport vulnerability severity.

Microsoft recently included the patch for an old vul-
nerability in a security update without disclosing this fact
[12]. Two weeks later Microsoft released an emergency
alert to install the patch because a dangerous worm ex-
ploit of this bug was published, and many systems had
not installed the earlier under-labeled patch [11]. An
ICD perspective could perhaps design a reputation ser-
vice that provides vendors with sufficient incentives to
provide more informative vulnerability labels.

Knowledge Workers In any sizable organization,
knowledge workers make daily decisions that affect the
security of the organization’s information infrastructure.
Does Bob leave his password on a sticky note under the
keyboard, or memorize it? Will Ted just email the docu-
ment instead of using the access-controlled storage sys-
tem?

Careful attention must be paid to incentives for knowl-
edge workers. Conflicts of interest between owners and
employees are known in the ICD literature as principal-
agent problems [9]. In this example there is a problem of
hidden action: it is costly or impossible for the organiza-
tion to perfectly monitor security compliance by employ-
ees. Much is known about design for such problems. For
example, since appropriate security behavior is difficult
to verify, incentives should be applied to other observ-
able actions (proxies) that are closely linked with appro-
priate security behavior, with intensity of incentive posi-
tively correlated with the informativeness of the proxies.
However, when there are multiple types of hidden ac-
tion in which the organization has an interest (e.g., secu-
rity compliance, mental effort, attendance to work rather
than personal communications, diligence, etc.) incen-
tives must be delicately balanced or the employee will fa-
vor some activities over others. For example, if bonuses
are more dependent on timely project completion than
on discovered security failures, the employee may over-
invest in expedience at the expense of good security hy-
giene.3

Botnets Botnets, or networks of hacked machines un-
der the control of a single attacker, have been used for
a number of malicious purposes [13], including dis-
tributed denial-of-service attacks, and for sending spam
and phishing emails. Botnets are possible because a large
portion of computer users do not provide adequate secu-
rity for their machines, either because they haven’t been
sufficiently motivated to learn how, or to care enough.

When a typical home user’s computer is compromised
for use in a botnet, he actually suffers very little; he pos-
sibly notices some system instability and network unreli-
ability, but can easily attribute it to other external causes,
such as normal variations in quality of service. He has
little incentive to prevent such compromises, or to fix
them once discovered, particularly since fixing the prob-
lem frequently involves reinstalling the operating system
at great inconvenience. These users do not directly bear
the costs of the victims of these botnet attacks, such as
the downtime and lost sales for eBay. This has character-
istics of an ICD problem known as the private provision
of public goods, and earlier illustrated by the administra-
tors who aren’t motivated to install worm throttles for the
benefit of external networks. What can be done to moti-
vate individuals to contribute more effort and resources
to the public good?

Privacy-enhancing technologies Numerous technolo-
gies “enhance privacy” by providing some level of
anonymity. In general, these technologies work by mak-
ing it very difficult to tell which node of a large set of
nodes originated a communications. To work effectively

2
HotSec ’06: 1st USENIX Workshop on Hot Topics in Security USENIX Association2



www.manaraa.com

these systems require many traffic-relaying participants
[5]. However, they suffer from a common incentive prob-
lem: they rely on nodes being willing to forward anony-
mous messages on behalf of others. Forwarding costs
bandwidth and incurs risks, since anonymous commu-
nications are often anonymous for a reason. The ratio-
nal choice may be to free-ride, using the system to send
messages without contributing to it by forwarding oth-
ers’ messages, resulting in underprovision of forwarding
nodes.

2.2 Keeping the Bad Stuff Out

Spam Spam (and its siblings spim, splog, spit, etc.) ex-
hibits a classic hidden information problem. Before a
message is read, the sender knows much more about its
likely value to the recipient than does the recipient her-
self. The incentives of spammers encourage them to hide
relevant information from the recipient whether or not
the email is spam to try to get through the technological
and human filters.

While commercial spam is not a traditional security
problem, it is closely related due to the adversarial re-
lationship between spammers and email users. Further,
much spam carries security-threatening payloads: phish-
ing and viruses are two examples. In the latter case, the
email channel is just one more back door access to sys-
tem resources, so spam can have more than a passing
resemblance to hacking problems.

Spyware An installer program acts on behalf of the
computer owner to install desired software. However,
the installer program is also acting on behalf of its au-
thor, who may have different incentives than the com-
puter owner. The author may surreptitiously include in-
stallation of undesired software such as spyware, zom-
bies, or keystroke loggers. Rogue installation is a hidden
action problem: the actions of one party (the installer)
are not easy to observe. One typical design response is
to require a bond that can be seized if unwanted behav-
ior is discovered (an escrowed warranty, in essence), or a
mechanism that screens unwanted behavior by providing
incentives that induce legitimate to take actions distin-
guishable from illegitimate installers.

3 Screening

One problem of keeping bad stuff out arises when some-
one has a resource and wants users to have access to
that resource, but has difficulty discerning good from bad
users. The users know if they are “good” or “bad” (their
type), so this is a problem of hidden information. This
scenario characterizes phishing and spam, with good

users being normal email senders and bad users as spam-
mers or phishers. But it also covers less obvious situ-
ations. Are all automatic software installs and updates
beneficial, or do some contain spyware? Or, are users at-
tempting to login authorized (good) or unwanted hackers
(bad)?

We illustrate with the last example, a well-known
problem with a well-known solution. We do not here
propose a new solution, but show how the known solu-
tion (passwords) can be understood as a screening mech-
anism. We offer this example to motivate the use of
ICD theory, which provides design principles to gener-
ate screening mechanisms, to generate new or improved
solutions for old and new problems.

Suppose a person, Principal, has a networked com-
puter or other similar resource. Two users who we call
Good and Bad have requested access to this resource.
Principal knows that one of these users is a hacker, but
cannot tell which one. He wants to provide access only
to Good. To screen (differentiate) between them, he asks
both to perform a task such as providing the correct pass-
word. This task is an effective screen if it induces Bad
to act differently than Good. Once Principal can tell the
difference, he can refuse restrict access by Bad. We now
characterize the incentive properties that such a task must
have to be effective.

More formally, let there be two user types, Good and
Bad, indexed by θG and θB , with θG > θB . To access,
User θ must perform a task with intensity t ∈ [0,∞].
The task could, for example, be the provision of a pass-
word, a cash payment, or some work (e.g., requiring
CPU cycles). The intensity t could represent the amount
of payment or work required; e.g., in the case of pass-
words, the number of correct bits required. If User ac-
cesses the resource, Principal receives benefit r(θi, t)
with rθ > 0, rt ≥ 0 (subscripts denote partial deriva-
tives). This benefit r represents an aggregate of all the
value the Principal gains from access by User, not just
money. Principal’s benefit is increasing in the quality
of the user (θ) and the screening task performed by the
user may be productive work (rt > 0) or dissipative
(rt = 0, “make work”). One way to accommodate mali-
cious users would be to specify that Bad who perform no
task provide Principal with benefit r(θB , 0) < 0. To at-
tempt access costs a user α(t, θ) (characterized below);
when access occurs, a user receives a benefit of s pro-
vided by Principal.4

Suppose Principal knew in advance each user’s type.
If so, then Principal could offer one of two optimal “con-
tracts”, {(sB , tB), (sG, tG)}, where contract (s, t) states
that if a user performs task t, Principal will provide suf-
ficient access for benefit s. For example, Bad might be
granted fewer resources (low sB) or be required to pro-
vide substantial work in return (high tB). A truly un-

3

HotSec ’06: 1st USENIX Workshop on Hot Topics in SecurityUSENIX Association 3



www.manaraa.com

desirable user (e.g., a malicious hacker) could be denied
access (benefit s = 0).

In practice the user type is not known in advance by
Principal. By offering an appropriate choice of contracts
{(si, ti)} (determined below) Principal may be able to
screen users so they, acting in self-interest, self-select
into different contracts and thus reveal their type.5 Users
self-select by choosing at what level t to perform the task,
receiving benefit si when they successfully perform task
ti. Determining these contracts is our design goal. By the
Revelation Principle [10], we can, without loss of gener-
ality, restrict the set of contracts we consider to those in
which the user finds it in her interest to truthfully reveal
his type.6

Principal chooses the menu of contracts to maximize
his total benefit subject to constraints, such as a budget
constraint (possibly zero) on the screening cost. If λ is
the fraction of users expected to be Good, Principal de-
signs contracts to maximize his benefit by solving

max
{(sB ,tB),(sG,tG)}

λ[r(θG, tG) − sG]

+(1 − λ)[r(θB , tB) − sB ] (SCREEN)

s.t. sB − α(tB , θB) ≥ u0 (1)

sG − α(tG, θG) ≥ u0 (2)

sG − α(tG, θG) ≥ sB − α(tB , θG) (3)

sB − α(tB , θB) ≥ sG − α(tG, θB). (4)

(1) and (2) are Participation Constraints (PC): a user
must receive at least u0 from making access to Princi-
pal’s resource, or will choose not to participate (attempt
access), for some u0 determined by the user’s other op-
portunities. (3) and (4) are Incentive Compatibility (IC)
constraints: The payoff from truthfully revealing type
must be greater than the payoff from dissembling to ob-
tain the other type’s treatment. The Revelation Princi-
ple allows us to impose the IC constraints to reduce the
search space for an optimal solution.

We have not specified yet α(t, θ), the cost of perform-
ing a task with intensity t for user type θ. Suppose the α
can be constructed to satisfy the following conditions:

αt(t, θ) > 0, for t > 0 (5)

αtt(t, θ) > 0 (6)

αθ(t, θ) < 0 (7)

αtθ(t, θ) < 0, for t > 0. (8)

We show below that these constraints produce an effec-
tive screen that will cause users to truthfully reveal their
types. The first two conditions ensure the cost of per-
forming the task is convex. Convexity means that task
difficulty (cost) is increasing in t and at an increasing

rate; this condition is sufficient though not necessary for
the main results below. The third condition is that for any
given level of screen t, the screen costs more for the Bad
than Good users. The final condition is a single-crossing
property we use below.

To illustrate, these properties are satisfied by standard
password systems. Multi-bit passwords satisfy the con-
vexity requirement (5), (6): the number of possible pass-
words is exponential in the number of bits. Providing a
valid multi-bit password costs much less for Good (con-
dition (7) because Good created or was told the correct
password in advance and must merely retrieve it from
storage, whereas Bad must use costly resources to guess
it, including perhaps nontrivial timeout waits after mak-
ing multiple incorrect guesses. The single-crossing prop-
erty (8) requires here that the incremental cost of harder
tasks is higher for Bad than for Good: the password stor-
age and retrieval cost for Good is approximately linear,
but the guessing cost for Bad is approximately exponen-
tial.

Define ui to be the total net benefit (utility) to a user
of type i; mathematically ui = s−α(t, θi). The solution
of Principal’s problem (SCREEN) yields several illumi-
nating results:

Result 1 Utility for Bad is minimal: uB = u0.

Result 2 Good gets a net gain: uG > u0.

Result 3 Good users receive more value from access
(sG > sB) but perform a harder task (tG > tB).

Results 1 and 2 are straightforward to prove; see, e.g.,
[6]. Result 2 has the following interpretation: Good owns
valuable property — his knowledge that he is a Good
type — and must be paid an information rent by Principal
for the use of this property; the rent is uG − u0 > 0.
Result 1 is a corollary: since everyone who doesn’t prove
they are Good is Bad, there is no reason to provide Bad
with extra surplus to reveal her type.7

We demonstrate Result 3 with Figure 1. The curves
s−α(t, θ) = u are indifference loci (user utility is a con-
stant for all (s, t) combinations on the locus), with utility
increasing to the northwest (more s, less t). First con-
sider the curve s−α(t, θB) = u0 (the indifference locus
for Bad); we know from Result 1 that (sB , tB) lies some-
where on this locus. Now construct Good’s locus through
(sB , tB); by (8) there is a single crossing and the slope is
less. Since αθ < 0, by (7), sB − α(tB , θG) = u1 > u0

(Good receives some surplus utility from choosing con-
tract (sB , tB).) By (4), (sG, tG) lies to the southeast of
the B locus s − α(t, θB) = u0. By (3), (sG, tG) lies to
the northwest of s−α(t, θG) = u1. Thus, (sG, tG) must
lie in the shaded area, and Result 3 obtains.

4
HotSec ’06: 1st USENIX Workshop on Hot Topics in Security USENIX Association4



www.manaraa.com

For the password example, the task t is to provide cor-
rect bits; when a password system works, Good provides
more bits than does Bad, consistent with Result

Assumptions (5)–(8) represent properties of the task
that ensure that screening will work, and hence are prin-
ciples for the design of such tasks. One of the most im-
portant design principles is not a result, but assumption
(8): the incremental cost of performing the screening
task must be lower for Good than Bad types (the anal-
ogous principle holds for a continuum of types). This
ensures that for a given payoff, a Good type will reveal
himself by a greater willingness to perform the task. If
the task is equally difficult for both Good and Bad types
(not satisfying (8)), then it will not differentiate users.
This design principle is only sufficient to ensure such
contracts exist; they specifics for a given screen still must
be found.

We illustrate the usefulness of Results 2-3 and as-
sumption (8) by sketching their application to other
“keep the bad stuff out” problems. Challenge-response
systems such as CAPTCHAs are intended to prevent au-
tomated agents from hijacking various online resources.
To get agents to reveal their type as human or bot, the
task solving cost must be higher for the bot (presumably
in CPU or programming time). Once revealed, the bot
is denied access (sB = 0), and its owner gets only the
value from its next best alternative activity, u0. Thus
bots usually don’t attempt to crack CAPTCHAs, satis-
fying Result 3 that the Good types exert more effort on
the screening task (or, as with passwords, we could inter-
pret t as the number of correct bits provided, which will
be lower for bots if faced with an effective CAPTCHA
screen). Of course, if Bad types find ways to make the
incremental solving cost similar to Good’s cost (violat-
ing (8), say through cheap automated pattern-matching,

s

t

sB

tB

s-DD(t, B)=u0

s-DD(t, G)=u1>u0

(sG,tG)

Figure 1: Screening good from bad

or cheap porn-bribes to human puzzle solvers, the screen
will be ineffective.

[4] proposed a challenge-response approach to spam
reduction; [2] describe a method that illustrates screening
theory. Senders must perform CPU-cycle-burning tasks
to obtain a valid (personal) address for a recipient. The
screening task may be more costly for spammers because
competition requires them to run servers at full capac-
ity, so a CPU task for every valid email address becomes
prohibitive. Good agents are presumed to have machines
sufficient idle cycles. The authors of [2] magnify the cost
differential by allowing recipients to repudiate valid in-
coming email addresses if a single spam enters that chan-
nel, so spams incur the CPU cost to obtain a new address
for nearly every message sent, while good senders only
need to pay for a good address one time.

One of us proposed a related mechanism to fight un-
solicited communication using repudiable cash bonds as
the screen [7]. Senders put t in escrow; recipients can
claim the bond or let it revert to sender. The bond cost is
higher to bad types if they face a higher probability that
the recipient will claim the bond; presumably recipients
will not always claim bonds from good types because
they want future communications from the good types.

4 Discussion

Many problems in information security exist at least par-
tially because the people involved are not properly moti-
vated to solve them. Incentive-centered design provides
tools and principles to guide technology development for
security systems. As an example, we developed a screen-
ing model and showed how the design principles it pro-
vides have been used in existing security technologies.
The key insight is that human behavior — whether coop-
erative, indifferent or malicious — is not a fixed con-
straint. Rather, humans have goals, and choose their
behavior to advance their goals. Design with this in
mind can produce systems that change incentives, and
thus harness behavior to advance the designer’s goals.
The incentive-centered design literature provides rigor-
ous theories and methods for implementing this general
approach.

Traditional information security generally deals with
keeping the bad stuff out. It has been fairly successful
at keeping hackers, viruses, and worms at bay. We de-
scribed some more recent security problems in this cate-
gory. The screening model above prescribes design fea-
tures that induce people to self-identify, so resource man-
agers can keep the bad stuff out. Many of the design prin-
ciples from the screening model are intuitively under-
stood by the people who develop security technologies.
Password systems are an example of technology that got
this right, and as a consequence, are — if correctly used

5
HotSec ’06: 1st USENIX Workshop on Hot Topics in SecurityUSENIX Association 5



www.manaraa.com

— effective at separating legitimate users from attackers.
The same principles — or others from ICD, as screen-
ing is but one model from this field — can be applied to
develop new or improved solutions for both new and old
problems.

Even when technical security systems are effective at
keeping the bad stuff out, they may fail to get the good
stuff in. Passwords again are a good example: they of-
ten fail because users are insufficiently motivated to use
strong passwords that prevent password guessing attacks.
Incentive-centered design, can create systems that mo-
tivate users to provide desired security effort. Indeed,
incentive-centered design, as an alternative to technolog-
ical “hardening”, may be especially effective in those ap-
plications involving agents who are not malicious, but
merely undermotivated, since it is not their objective to
thwart the system. Non-malicious agents may be more
robustly responsive to incentives.

In future research we will model “getting the good
stuff in” problems to provide design principles (and im-
plemented designs) for this class of problems.

Acknowledgments

Our thinking was improved by conversations with Paul
Resnick, Yan Chen, Rahul Sami, Brian Noble, Yoshi
Kohno, Mark Ackerman, Marshall van Alstyne, and the
rest of the ICD lab group at Michigan (Lian Jian, John
Lin, Anna Osepayshvili, Kil-sang Kim, Nese Nasif, Greg
Gamette, and Ben Chiao). Emilee Rader and Chris Con-
nelly contributed greatly to readability.

References

[1] ANDERSON, R. Why cryptosystems fail. In ACM First confer-
ence on Computers and Communications Security (1993).

[2] BLEICHENBACHER, D., GABBER, E., JAKOBSSON, M., MA-
TIAS, Y., AND MAYER, A. Curbing junk e-mail via secure
classification. In Proc. of the 2nd International Conference on
Financial Cryptography (1998), pp. 198–213. Available from
citeseer.ist.psu.edu/86989.html.

[3] CHEN, Y., LI, X., AND MACKIE-MASON, J. K. Online
fund-raising mechanisms: A field experiment. Contribu-
tions to Economic Analysis & Policy 5, 2 (2006). http:
//www.bepress.com/bejeap/contributions/
vol5/iss2/art4.

[4] DWORK, C., AND NAOR, M. Pricing via processing or combat-
ting junk mail. In Crypto ’92 (1992), pp. 139–147.

[5] GOLDBERG, I. A Pseudonymous Communications Infrastructure
for the Internet. PhD thesis, University of California, Berkeley,
2000.

[6] LAFFONT, J.-J., AND MARTIMORT, D. The Theory of Incen-
tives. Princeton University Press, Princeton, 2001.

[7] LODER, T., VAN ALSTYNE, M., AND WASH, R. An economic
solution to unsolicited communications. Advances in Economic
Analysis and Policy 6, 1 (2006).

[8] MACKIE-MASON, J. K., SHENKER, S. J., AND VARIAN, H. R.
Service architecture and content provision: The network provider
as editor. Telecommunications Policy 20, 3 (Apr. 1996).

[9] MAS-COLELL, A., WHINSTON, M. D., AND GREEN, J. R. Mi-
croeconomic Theory. Oxford University Press, New York, 1995.

[10] MYERSON, R. B. Incentive compatibility and the bargaining
problem. Econometrica 47 (1979), 61–74.

[11] NARAINE, R. ‘detailed exploit’ published for crit-
ical windows flaw. eWeek.com (June 26 2006).
http://www.thechannelinsider.com/article/
Detailed+Exploit+Published+for+Critical+
Windows+Flaw/181984_1.aspx.

[12] NARAINE, R. Microsoft’s security disclosures come under
fire. eWeek.com (April 13 2006). http://www.eweek.com/
article2/0,1895,1949279,00.asp.

[13] THE HONEYNET PROJECT AND RESEARCH ALLIANCE. Know
your enemy: Tracking botnets. http://www.honeynet.
org/papers/bots/.

[14] TWYCROSS, J., AND WILLIAMSON, M. M. Implementing and
testing a virus throttle. In Proceedings of the 12th USENIX Secu-
rity Symposium (2003).

Notes
1The motivated behavior framing is more general than it might

seem at first blush. For example, security failures due to underinformed
users might be investigated as a problem in a failure to provide incen-
tives to be better informed. Not every human action can be analyzed as
a rational response to incentives, but a surprising number yield usefully
to this framework.

2For example, one of the authors recently conducted an online ex-
periment in “getting good stuff in” to test multiple theories of motivat-
ing public contributions to an online library[3].

3The theory does not stop at these qualitative characterizations, but
guides measurement and quantitative design.

4For simplicity we assume that a transfer worth s units of value
to Principal is also worth s units to a user, such as would be true for
a money payment. But the value transfer typically won’t be a cash
payment, but resource usage such as CPU cycles. It is straightforward
to modify the analysis so that a transfer that costs Principal s is worth
some function f(s) to User.

5Contracts may be implicit; it is not necessary that they be formal.
6The Revelation Principle says that for any set of contracts under

which a rational agent is not truthful, there exists another set of con-
tracts under which a rational agent wants to report honestly, and the
payoffs in all states of the world are the same as in the first set of con-
tracts. The intuition is straightforward: for whatever map agents are
using to transform their true type into an announced type in the original
mechanism, imagine a different mechanism in which agents announce
their true type, and the rules of the mechanism then apply the same map
as the agents were using before to transform their truthful inputs into
their dishonest inputs, and then assigns the outcomes they would have
gotten for those dishonest inputs in the original mechanism.

7We have formulated the problem as if Bad can provide some pos-
itively value to Principal, albeit less than Good. If Bad types provide
strictly negative utility to Principal (they are always malicious) no mat-
ter the amount of task t they perform (r(θB , t) < 0 ∀ t), then we could
easily reformulate the problem with a non-participation constraint to re-
place (1) and a change in the Principal’s objective function to correctly
account for non-participation by successfully screened B types. The
results above would be the same, and thus for discussion we assume
that B types who are indifferent about participating (uB = u0) merely
go away without attempting entry if the screen would be effective.

6
HotSec ’06: 1st USENIX Workshop on Hot Topics in Security USENIX Association6


